Basics and Practical Examples of Transmission
Circuit Diagram of a Transmission Line

\[Z_0 = \sqrt{\frac{j\omega L' + R'}{j\omega C' + G'}} \]

- L’ Characteristic Inductance per Unit Length \(nH/cm \)
- C’ Characteristic Capacitance per Unit Length \(pF/cm \)
- R’ Characteristic Resistance per Unit Length \(\Omega/cm \)
- G’ Characteristic Conductance per Unit Length \(S/cm \)
Loss-free Transmission Lines

At high frequencies the transmission line losses on printed circuit boards in digital systems can be neglected.

\[Z_0 = \sqrt{\frac{L'}{C'}} \quad \text{(real number !)} \]

\[\tau = \sqrt{L' \times C'} \]

\[f_0 = \frac{1}{2\pi \sqrt{L' \times C'}} \quad \text{with } L', C' \to 0 \Rightarrow f_0 = \infty \]
A transmission line consists of

- a signal line which carries the signal current
- a signal return line (mostly GND) which carries a return current of the same magnitude.

Any DC interconnect between the GND terminals of the two circuits (e.g. safety earth) will not provide a signal return path according to the transmission line theory.

The area between the signal line and the return lines determines the capability of the circuit to radiate RF and also its immunity against EMI.
Transmission Line Theory

Rule of Thumb:
The transmission line theory has to be applied, when the rise time of the signal is shorter than twice the propagation time.

Example 1: Twisted pair cable; $\tau = 5 \text{ ns/m} ; \ t_r = 2 \text{ ns}$

$$L = \frac{t_r}{2\tau} \frac{2 \text{ ns}}{2 \times 5 \text{ ns/m}} = 0.2 \text{ m}$$

Example 2: Bus Line; $t = 20 \text{ ns/m} ; \ t_r = 2 \text{ ns}$

$$L = \frac{t_r}{2\tau} \frac{2 \text{ ns}}{2 \times 20 \text{ ns/m}} = 0.05 \text{ m}$$

With shorter signal lines all line reflections occur during the rise/fall time of the signal. In this case it is allowed to use the simplified capacitive load line model.
Typical Line Impedances

<table>
<thead>
<tr>
<th></th>
<th>L' (nH/cm)</th>
<th>C' (pF/cm)</th>
<th>Z (Ω)</th>
<th>τ (ns/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGLE WIRE (FAR AWAY FROM GND)</td>
<td>20</td>
<td>0.06</td>
<td>600</td>
<td>~4</td>
</tr>
<tr>
<td>SPACE</td>
<td>μ_0</td>
<td>ε_0</td>
<td>370</td>
<td>3.3</td>
</tr>
<tr>
<td>TWISTED PAIR CABLE</td>
<td>5-10</td>
<td>0.5-1</td>
<td>80-120</td>
<td>5</td>
</tr>
<tr>
<td>FLAT CABLE</td>
<td>5-10</td>
<td>0.5-1</td>
<td>80-120</td>
<td>5</td>
</tr>
<tr>
<td>(ALTERNATING SIGNAL AND GND WIRE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIRE ON PC BOARD</td>
<td>5-10</td>
<td>0.5-1.5</td>
<td>70-100</td>
<td>~5</td>
</tr>
<tr>
<td>COAX CABLE</td>
<td>2.5</td>
<td>1.0</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>BUS LINE</td>
<td>5-10</td>
<td>10-30</td>
<td>20-40</td>
<td>10-20</td>
</tr>
</tbody>
</table>
Waveforms with Transmission Lines and Capacitive Load

L=0m L=1m L=11m
(~10pF) (~56pF) (~616pF)

SN74LS00
Z=100Ω
100Ω

SN74LS00
C_L = 10pF
C_L = 56pF
C_L = 616pF
Analysis of Line Reflections

\[V_f(x-\tau) \]

\[Z_0, \tau \]

\[R_f = \infty \]
Waveforms caused by Line Reflections

Incident wave at the generator output
\[V_a = V_o \frac{Z}{Z + R_o} \]

Wave reflected at the line end
\[V_{r1} = V_a \times \rho_B \quad \rho_B = \frac{R - Z}{R + Z} \]

Wave reflected at the generator output
\[V_{r2} = V_{r1} \times \rho_A \quad \rho_A = \frac{R_o - Z}{R_o + Z} \]

Quiescent state
\[V_\infty = V_o \frac{R}{R_o + R} \]
Lattice Diagram

\[V_O = 3.7V \]

\[R_D = 30\Omega \]

\[S \]

\[A \]

\[Z = 75\Omega \]

\[B \]

\[\rho_A = \frac{30 - 75}{30 + 75} = -0.429 \]

\[\rho_B = \frac{100 - 75}{100 + 75} = 0.143 \]

\[V_O = 3.70V \]

\[V_a = V_O \times \frac{75\Omega}{75\Omega + 30\Omega} = 2.64V \]

\[V_{r1} = 2.64V \times 0.14 = 0.37V \]

\[V_{r2} = 0.37V \times (-0.42) = -0.16V \]

\[V_{r3} = -0.16V \times 0.14 = -0.02V \]

\[V_{r4} = -0.02V \times (-0.42) = 0.008V \]

\[t = 0 \]

\[V_{(A,t)} = V_O = 3.70V \]

\[V_{(B,t)} = V_B \]

\[t = \tau \]

\[3.02V \]

\[V_{r1} = 0.378 \]

\[V_{r2} = -0.162 \]

\[V_{r3} = -0.0231 \]

\[V_{r4} = 0.0099 \]

\[t = 3\tau \]

\[2.835V \]

\[V_{r5} = 0.00142 \]

\[t = 5\tau \]

\[2.847V \]

\[V_{r6} = 0.00081 \]

\[t = 7\tau \]

\[2.846V \]
Bergeron Diagram

Voltage changes only after twice the propagation time. Incident wave is independent from line termination.

\[V_{A(0<t<2\tau)} = V_0 \times \frac{Z_0}{R_0 + Z_0} \]

Steady state condition:

\[V_{(t=\infty)} = V_0 \times \frac{R_T}{R_0 + R_T} \]
Line Reflections - Special Cases

- **Generator with 0 Ohms output impedance and unterminated line**
 - $R_O = 0$
 - Reflections occur

- **Correctly terminated line**
 - $R = Z$
 - No reflections

- **Shorted line generator for short pulses**
 - $R_O = Z$

![Diagram showing different cases of line reflections](image)
Line Reflections - Special Cases

- Generator with 4 Ohm Output Impedance and unterminated line:
 - $R_0 = 4\,\Omega$
 - $Z = 100\,\Omega$, $L = 8\,m$

- Correctly terminated line with no reflections:
 - $R_0 = 50\,\Omega$
 - $Z = 50\,\Omega$, $L = 2\,m$

- Shorted line generator for short pulses:
 - $R_0 = Z$
 - $Z = 50\,\Omega$, $L = 2\,m$
Measurement of the Line Impedance

\[Z_0 = \frac{R_0}{V_o/V_a - 1} \]

\(\tau \times Z_0 = L' \)

\(\tau / Z_0 = C' \)

*) Note: \(R_0 = 50 \, \Omega \) // \(50 \, \Omega = 25 \, \Omega \)
Line Reflections
Open Circuit

An open circuit at the line end causes under- and overshoots which may exceed the maximum rated input voltage of the receiving circuit.

The following over- and undershoots may cross the threshold voltage of the receiver several times and may generate system errors.
Line Reflections
Terminated Line

Line reflections are eliminated by a correct line termination.

A mismatch up to 50% is acceptable.

Note: - Increased Power Dissipation
 - High drive Capability required.
Line Termination Circuits

Mismatch of 50%...100% acceptable (with low impedance bus lines up to 400%).
Line Reflections
Matching of Generator Impedance

Under- and overshoots are avoided by matching the output impedance of the line driver to the line impedance by means of a series resistor. Power dissipation is not increased (recommended in CMOS systems).

Note: Undefined logic levels along the transmission line for up to twice the propagation time.

Circuits with built-in serial termination (25Ω to 30Ω):
8 Bit: SN74ABT2244
16 Bit: SN74ABT162244
18 Bit: SN74ABT162501
Clamping diodes at the end of the transmission line absorb the energy of under- and overshoots and ensure a clean signal waveform. Input circuits of logic ICs contain these clamping diodes.

Note: The clamping diodes of VLSI circuits are often not capable to handle the high currents generated by line reflections (parasitic transistors!). Provide additional Schottky clamping diodes!

Schottky Diode Arrays:
SN74S1050, SN74S1051, SN74S1052, SN74S1053, SN74S1056, SN74F1056, SN74F1016, SN74F1018
Bus Termination Arrays

Released Functions:
- SN74S1050 12-Bit Schottky Diode Array
- SN74S1051 12-Bit Schottky Diode Network
- SN74S1052 16-Bit Schottky Diode Array
- SN74S1053 16-Bit Schottky Diode Network
- SN74S1056 8-Bit Schottky Diode Array
- SN74F1056 9-Bit Schottky Diode Array
- SN74F1016 16-Bit Schottky Diode
- R-C Bus Termination Array
- SN74F1018 18-Bit Schottky Diode
- R-C Bus Termination Array

Applications:
- Arrays in TTL systems
- Networks in CMOS systems (positive overshoots)
- Small buses, e.g. Memory Arrays
- System bus in personal computers
The clamping circuit TL7726 protects sensitive analog and digital inputs against excessive overvoltages and by that ensures the function of the circuit.